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By classical estimation, approximation, and data processing [1],  the common
least square method and other ones provide: The worse data, the greater influence.
Best data approximation science [2-8] reliably ensures for the first time: The better
data, the greater influence. Hence also outliers are fully adequately considered.
Supplemented data half-division theory considers (e.g., in the 1D case) ordered
data x1 ≤ x2 ≤ … ≤ xn with the mean interval length (xn - x1)/(n - 1) > 0, n > 1, and
supplements them with x0 = -∞ = -ω and xn+1 = +∞ = ω (the countable cardinality).
Then the reals set R = (-∞, +∞) = |-ω, ω| = Σj=0

n |xj , xj+1| = Σj=0
n {1/2xj + (xj , xj+1) + 1/2xj+1}.

Quantile-variance theory includes  multidimensional  generalization  using  either
distances by data rotation invariance or coordinates otherwise. The quantile method
uses rationally selected data quantiles, e.g., quartiles q1/4 , u = q1/2 (median), and q3/4

(at 0.6745σ from the mode of a normal distribution), then determines left σL (x ≤ u)
and right σR (x ≥ u) standard deviations σ: σL = (q1/2 - q1/4)/0.6745, σR = (q3/4 - q1/2)/
0.6745.  The variance method directly determines (about any u, e.g., mean xm or
median q1/2) σ2 = Σj=1

n (xj - u)2/n, σL
2 = Σx(j)≤u (xj - u)2/(n/2), and σR

2 = Σx(j)≥u (xj - u)2/(n/2).
Binormal weight theory naturally weights data via binormal probability density:
f(x) = (2/π)1/2/(σL + σR) exp[-(xj - u)2/(2σL

2)], f(x) = (2/π)1/2/(σL + σR) exp[-(xj - u)2/(2σR
2)].

Variable-variance weight theory uses c with sign c = sign(σR - σ) = sign(σ - σL) and
σL(x) = σ + 2(σL-σ)/π arctan[c(x-u)/(σL-σ)], σR(x) = σ + 2(σR-σ)/π arctan[c(x-u)/(σR-σ)].
Local weight theory generally weights any non-unimodal distributions (a > 0, b > 0):
xG = Σj=0

n 0.5(xj + xj+1)exp{-a[(n-1)(xj+1 - xj)/(xn - x1)]b}/Σj=0
n exp{-a[(n-1)(xj+1 - xj)/(xn - x1)]b}

= Σj=1
n-1 0.5(xj + xj+1)exp{-a[(n-1)(xj+1 - xj)/(xn - x1)]b}/Σj=1

n-1 exp{-a[(n-1)(xj+1 - xj)/(xn - x1)]b}.
For n = 2, xG = (x1 + x2)/2. For x1 < x2 = … = xn and a = ln(n/2)/(n - 1)b, xG = [x1 + (n -1)2

x2]/[1 + (n-1)2]. For b = 2, a = ln(n/2)/(n - 1)2. See 1D & 2D data processing, Figs. 1, 2:

Figure 1. One-dimensional data processing Figure 2. 2D data processing

In Fig. 1, mean xm = 1.28, u = q1/2 = 1, ubinormal = 1.1229, uvariable =1.1057, ulocal = 1.0652.

Very asymmetric/scattered data also in aeronautical fatigue are adequately fitted.
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