Generalization of the Huber-von-Mises-Henky Criterion in Fundamental Strength Sciences
by
© Ph. D. & Dr. Sc. Lev Gelimson
Academic Institute for Creating Fundamental Sciences (Munich, Germany)
Strength and Engineering Journal
of the "Collegium" All World Academy of Sciences
Munich (Germany)
8 (2008), 1
For an isotropic ductile material with equal strength in tension and compression, the Huber-von-Mises-Henkycriterion (of the potential energy of distortion) [1-3]
σe = {[(σ1 - σ2)2 + (σ2 - σ3)2 + (σ3 - σ1)2]/2}1/2 = σl
(σ1 , σ2 , σ3 the principal stresses with
σ1 ≥ σ2 ≥ σ3 ,
σe the equivalent stress, and σl the uniaxial limiting stress) is commonly used. To generalize this criterion, divide (using ideas and approaches in similarity and dimensionality theories) each principal stress by the modulus σl of its ultimate value ±σl in uniaxlal state [4, 5]:
σ10 = σ1/σl , σ20 = σ2/σl , σ30 = σ3/σl , σe0 = σe/σl .
The transformed criterion becomes universal:
σe0 = {[(σ10 - σ20)2 + (σ20 - σ30)2 + (σ30 - σ10)2]/2}1/2 = 1.
It has no evident material constant and so allows imparting a generalized sense (in comparison with this transformation) to the reduced (relative) principal stresses σ10, σ20, σ30 according to the specific character of the strength of any given material.
For an isotropic brittle material with unequal strengths in tension and compression, reduce each principal stress by dividing it by the modulus of its ultimate value in the corresponding uniaxial state, that is stin tension and -σc (σc > 0) in compression (j ∈ {1, 2, 3, e}):
σj0 = σj/σt if σj ≥ 0,
σj0 = σj/σc if σj ≤ 0.
In this case, the universal criterion in the space of the usual principal stresses σ1 , σ2 , σ3 is
σe ={[(σ1 - σ2)2 + (σ2 - σ3)2 + (σ3 - σ1)2]/2}1/2 = σc (0 ≥ σ1 ≥ σ2 ≥ σ3);
σe = σi ={[(σ1 - χσ2)2 + χ2 (σ2 - σ3)2 + (χσ3 - σ1)2]/2}1/2 = σt (σ1 ≥ 0 ≥ σ2 ≥ σ3, χ= σt/σc);
σe ={[(σ1 - σ2)2 + (σ2 - χσ3)2 + (χσ3 - σ1)2]/2}1/2 = σt (σ1 ≥ σ2 ≥ 0 ≥ σ3);
σe ={[(σ1 - σ2)2 + (σ2 - σ3)2 + (σ3 - σ1)2]/2}1/2 = σt (σ1 ≥ σ2 ≥ σ3 ≥ 0).
It gives a limiting surface symmetric with respect to axis σ1 = σ2 = σ3 and consisting of the two semi-infinite von Mises cylinders with radii (2/3)1/2σt by σ1 + σ2 + σ3 ≥ σt , (2/3)1/2σc by σ1 + σ2 + σ3 ≤ -σc and of the frustum of a cone (connecting them) by -σc ≤ σ1 + σ2 + σ3 ≤ σt .
For an orthotropic material when its basic directions coincide with the principal directions of a stress state, if such a material has limiting stresses σt1 , σt2 , σt3 in uniaxial tensions and σc1 , σc2 , σc3 in uniaxial compressions in the basic and simultaneously principal directions 1, 2, 3, then the last reduction can be naturally generalized by transformation (j ∈ {1, 2, 3, e})
σj0 = σj/σtj if σj ≥ 0,
σj0 = σj/σcj if σj ≤ 0
with no renumbering σ1 , σ2 , σ3 that gives σ10 ≥ σ20 ≥ σ30.
σlj = σtj = σcj (j = 1, 2, 3),
we obtain the Hu-Marin criterion (as a particular case) but with σe0
σe0 = [σ12/(σl1)2 + σ22/(σl2)2 + σ32/(σl3)2 - σ1σ2/(σl1σl2) - σ2σ3/(σl2σl3) - σ3σ1/(σl3σl1)]1/2 = 1
and (by σtj ≠ σcj in some direction j) its generalization, e.g., by σ1 ≥ 0, σ2 ≤ 0, σ3 ≤ 0,
σe0 = [σ12/(σt1)2 + σ22/(σc2)2 + σ32/(σc3)2 - σ1σ2/(σt1σc2) - σ2σ3/(σc2σc3) - σ3σ1/(σc3σt1)]1/2 = 1.
For any anisotropic material and arbitrary static loading, the last reduction is also generalized:
σj0 = σj/|σlj|.
By this transformation, σlj is the limiting value of a sole (uniaxial) principal stress σj . That value has the direction and sign of σj and acts at the same solid’s point under the same other loading conditions. This is a new generalized re-comprehension of the previous reduction if σtj and σcj mean the limiting stresses in tension and compression both in the direction of σj but not indispensably in the basic directions of the anisotropic material which are not obliged to exist. All these universal transformations apply to any strength criteria. And, in contrast to the Huber-von-Mises-Henky criterion, the universal critical state criterion in σ10, σ20, σ30 [4, 5] always conserves its simple form like all fundamental laws of nature.
[1] Huber M. T. Die spezifische Formänderungsarbeit als Maß der Anstrengung eines Materials. Czasopismo Techniczne, Lemberg (Lwow), 1904
[2] von Mises R. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten der Gesellschaft der Wissenschaften, Göttingen, 1913
[3] Henky H. Zur Theorie plastischer Deformationen. Zeitschrift angewandter Mathematik und Mechanik, 1924
[4] Lev Gelimson. Elastic Mathematics. General Strength Theory. The “Collegium” All World Academy of Sciences Publishers, Munich, 2004
[5] Lev Gelimson. Providing Helicopter Fatigue strength: Unit Loads. In: Structural Integrity of Advanced Aircraft and Life Extension for Current Fleets – Lessons Learned in 50 Years After the Comet Accidents, Proceedings of the 23rd ICAF Symposium, Dalle Donne, C. (Ed.), 2005, Hamburg, Vol. II, 589-600