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Abstract

The explicit normalization, expectation, and variance formulas along with the median and mode 
formulas and algorithms for a general one-dimensional piecewise linear probability distribution are 
obtained.  They  are  also  applied  to  a  general  one-dimensional  piecewise  linear  continuous 
probability  distribution  and,  in  particular,  to  a  tetragonal  probability  distribution.  The  known 
formulas for a triangular probability distribution as a further particular case are used to test the 
obtained formulas and algorithms.
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Introduction

Both particular and some more general mostly continuous (continual without discontinuity points 
with jumps) piecewise linear probability distributions which can also be multidimensional are well-
known [Cramér]. For a triangular probability distribution, some basic formulas are also well-known 
[Kotz  Dorp,  Wikipedia  Triangular  distribution].  The  present  work  is  dedicated  to  analytically 
solving some fundamental  problems for more general  piecewise linear probability distributions. 
They are very simple,  natural,  and typical and can provide adequately modeling via efficiently 
approximating  practically  arbitrary  nonlinear  probability  distributions with  any  predetermined 
precision. General one-dimensional piecewise linear continuous probability distributions are also 
very important extensions of tetragonal and triangular probability distributions. It is very natural to 
verify analytical methods of solving problems for general piecewise linear probability distributions 
via using some well-known basic formulas for a triangular probability distribution. Geometrical 
approach can be also used to additionally verify analytical methods. If there are too many possible 
cases, which is typical for any piecewise problems, then apply  algorithmic approach rather than 
explicit solutions. The problems of the existence and uniqueness of the mean, median, and mode 
values for a general one-dimensional piecewise linear probability distribution are often nontrivial 
and  can  be  of  great  importance  for  practice.  It  is  very  useful  to  provide  clear  mathematical 
(probabilistic and statistical) sense of methods and results. Setting and solving many typical urgent 
problems is the only criterion of creating, developing, and estimating any useful theory. There are 
such  problems  not  only  in  probability  theory  and  mathematical  statistics,  but  also  in  physics, 
engineering,  chemistry,  biology,  geology,  astronomy,  meteorology,  agriculture,  politics, 
management, economics, finance, psychology, etc.



1. Piecewise Linear Probability Distribution

1.1. Main Definitions

Consider a general one-dimensional piecewise linear probability distribution (Fig. 1).
 

Fig. 1. General one-dimensional piecewise linear probability distribution

Here probability density distribution function f(x) is as always non-negative everywhere (-∞ < x < 
+∞) and can be positive on some finite segment (closed interval)

-∞ < a ≤ x ≤ b < +∞ (a < b)
only. Let n (n  N = {1, 2, ...}) intermediate points c∈ 1 , c2 , c3 , c4 , … , cn-3 , cn-2 , cn-1 , cn in the non-
decreasing order so that

a ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ … ≤ cn-3 ≤ cn-2 ≤ cn-1 ≤ cn ≤ b
divide this segment into n + 1 parts (pieces) of generally different lengths. To unify the notation,  
denote

c0 = a ,
cn+1 = b ,

c(i) = ci (i = 0, 1, 2, … , n + 1).
On each of n + 1 open intervals

 ci < x < ci+1 (i = 0, 1, 2, … , n),
probability density distribution function f(x) is linear. At n + 2 points

ci (i = 0, 1, 2, … , n + 1),
f(x) may take any finite real values. The following considerations (possibly excepting mode values 
below) do not depend on these values. At each of n + 2 points

ci (i = 0, 1, 2, … , n + 1),
left and right one-sided limits

lim f(x) = Li (x → ci - 0),
lim f(x) = Ri (x → ci + 0)

are any generally different finite real values. Naturally, we have
 L0 = 0,

  Rn+1 = 0.
Then on each of n + 1 open intervals

 ci < x < ci+1 (i = 0, 1, 2, … , n),



linear probability density distribution function
f(x) = Ri + (Li+1 - Ri)(x - ci)/(ci+1 - ci)
= [Ri(ci+1 - x) + Li+1(x - ci)]/(ci+1 - ci).

Integral (cumulative) probability distribution function
F(x) = P(X ≤ x) = ∫-∞

x f(t)dt
is probability P(X ≤ x) that real-number random variable X takes a real-number value not greater 
than x .



1.2. Normalization Condition

The probability of the event that X takes any finite real value is namely 1 because this event is  
certain. This gives integral normalization condition

∫-∞
+∞ f(x)dx = 1.

In our case we have
1 = ∫-∞

+∞ f(x)dx = ∫a
b f(x)dx

= Σi=0
n ∫c(i)

c(i+1) f(x)dx = Σi=0
n ∫c(i)

c(i+1) [Ri(ci+1 - x) + Li+1(x - ci)]/(ci+1 - ci) dx
= Σi=0

n {Ri[ci+1(ci+1 - ci) - (ci+1
2 - ci

2)/2] + Li+1[(ci+1
2 - ci

2)/2 - ci(ci+1 - ci)]/(ci+1 - ci)}
= Σi=0

n {Ri[ci+1 - (ci+1 + ci)/2] + Li+1[(ci+1 + ci)/2 - ci]}
= Σi=0

n (Ri + Li+1)(ci+1 - ci)/2.
We can also obtain this result at once rather geometrically than analytically, namely via adding the 
areas of the n + 1 rectangular trapezoids.
Therefore, to provide a possible (an admissible) probability density distribution function, necessary 
and sufficient integral normalization condition

Σi=0
n (Ri + Li+1)(ci+1 - ci) = 2

has to be satisfied.



1.3. Normalization Algorithm

Nota bene: This is one condition for
(n + 1) + (n + 1) + (n + 2) = 3n + 4

unknowns
Ri (i = 0, 1, 2, … , n),

Li (i = 1, 2, 3, … , n + 1),
ci (i = 0, 1, 2, … , n + 1).

Additionally,
Ri ≥ 0 (i = 0, 1, 2, … , n),

Li ≥ 0 (i = 1, 2, 3, … , n + 1),
c0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ … ≤ cn-3 ≤ cn-2 ≤ cn-1 ≤ cn ≤ cn+1 .

Generally, it is not possible to simply take any admissible values of
 3n + 4 - 1 = 3n + 3

unknowns and then to determine the value of the remaining unknown via this condition because it 
can happen that this value is inadmissible.
A natural idea, way, and algorithm to avoid this difficulty are as follows:
1. Fix

c0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ … ≤ cn-3 ≤ cn-2 ≤ cn-1 ≤ cn ≤ cn+1 .
2. Take any

Ri' ≥ 0 (i = 0, 1, 2, … , n),
Li' ≥ 0 (i = 1, 2, 3, … , n + 1)

so that there is at least one namely positive number among these 2n + 2 non-negative numbers.
3. Let

Ri (i = 0, 1, 2, … , n),
Li (i = 1, 2, 3, … , n + 1)

be proportional to
Ri' ≥ 0 (i = 0, 1, 2, … , n),

Li' ≥ 0 (i = 1, 2, 3, … , n + 1),
respectively, with a common namely positive factor k so that

Ri = kRi' (i = 0, 1, 2, … , n),
Li = kLi' (i = 1, 2, 3, … , n + 1).

4.  Explicitly  determine  the  value  of  parameter  k  as  the  only  unknown via  this  necessary  and 
sufficient integral normalization condition

Σi=0
n (Ri + Li+1)(ci+1 - ci) = 2

so that
k = 2 / Σi=0

n (Ri' + Li+1')(ci+1 - ci).
5. Explicitly determine

Ri = kRi' (i = 0, 1, 2, … , n),
Li = kLi' (i = 1, 2, 3, … , n + 1).



1.4. Mean Value (Mathematical Expectation)

Use the common integral definition [Cramér] of the mean value (mathematical expectation)
μ = E(X) = ∫-∞

+∞ xf(x)dx .
In our case we determine

μ = ∫-∞
+∞ xf(x)dx = ∫a

b xf(x)dx
= Σi=0

n ∫c(i)
c(i+1) xf(x)dx = Σi=0

n ∫c(i)
c(i+1) [Ri(ci+1x - x2) + Li+1(x2 - cix)]/(ci+1 - ci) dx

= Σi=0
n {Ri[ci+1(ci+1

2 - ci
2)/2 - (ci+1

3 - ci
3)/3] + Li+1[(ci+1

3 - ci
3)/3 - ci(ci+1

2 - ci
2)/2]/(ci+1 - ci)}

= 1/6 Σi=0
n {Ri[3ci+1(ci+1 + ci) - 2(ci+1

2 + ci+1ci + ci
2)] + Li+1[2(ci+1

2 + ci+1ci + ci
2) - 3ci(ci+1 + ci)]}

= 1/6 Σi=0
n [Ri(ci+1

2 + ci+1ci - 2ci
2) + Li+1(2ci+1

2 - ci+1ci - ci
2)]

= 1/6 Σi=0
n (ci+1 - ci)[Ri(ci+1 + 2ci) + Li+1(2ci+1 + ci)]

and, finally,
μ = Σi=0

n (ci+1 - ci)[Ri(2ci + ci+1) + Li+1(ci + 2ci+1)]/6.



1.5. Median Values

Use the common integral definition [Cramér] of median values ν for any of which both
P(X ≤ ν) ≥ 1/2

and
P(X ≥ ν) ≥ 1/2.

For a continual real-number random variable X ,
P(X ≤ ν) = ∫-∞

ν f(x)dx = P(X ≥ ν) = ∫ν
+∞ f(x)dx = 1/2.

To determine the set of all the median values ν , we can use the following natural idea, way, and 
algorithm:
1. First consider

ci (i = 0, 1, 2, … , n + 1)
not far from μ and determine both

L = max{i | ∫-∞
c(i) f(x)dx < 1/2}

and
R = min{i | ∫c(i)

+∞ f(x)dx < 1/2}.
Then both

∫-∞
c(L+1) f(x)dx ≥ 1/2

and
∫c(R-1)

+∞ f(x)dx ≥ 1/2.
2. On half-closed interval

c(L) = cL < ν ≤ cL+1 = c(L+1),
 determine

νmin = inf{ν | ∫-∞
ν f(x)dx = 1/2}.

3. On half-closed interval
c(R-1) = cR-1 ≤ ν < cR = c(R),

 determine
νmax = sup{ν | ∫ν

+∞ f(x)dx = 1/2}.
4. Then the set of all the median values ν is the interval whose endpoints are

νmin ≤ νmax

each of  which is included into the interval if and only if the corresponding greatest lower and/or 
least upper bound is really taken so that

νmin = min{ν | ∫-∞
ν f(x)dx = 1/2}

and/or
νmax = max{ν | ∫ν

+∞ f(x)dx = 1/2},
respectively.
Notata bene:
1. If

νmin = νmax ,
then the corresponding greatest lower and/or least upper bound is really taken so that

νmin = min{ν | ∫-∞
ν f(x)dx = 1/2}

and
νmax = max{ν | ∫ν

+∞ f(x)dx = 1/2},
hence the closed interval  

νmin ≤ ν ≤ νmax

contains the only median value
ν = νmin = νmax .

2. If
νmin < νmax ,

then the integral of f(x) on the interval whose endpoints are νmin and νmax vanishes independently of 
their including or excluding. Hence on this interval, non-negative probability density distribution 



function f(x) also vanishes possibly excepting points whose set has zero measure (in our case, a 
finite set).



1.6. Mode Values

To  begin  with,  consider  the  common  definition  [Cramér]  of  mode  values  for  any  of  which 
probability  density  distribution  function  f(x)  takes  its  maximum  value  fmax .  For  continual 
distributions, generalize this definition in the following directions:
1. Replace the maximum value fmax with the supremum value fsup which always exists.  The reason is 
that  it  is  possible  (for piecewise  linear  probability  distributions,  too)  that  function  f(x)  is 
discontinuous and does not take the supremum value fsup so that the maximum value fmax does not 
exist at all.  
2. Extend the range of function f(x), i.e. the set of values function f(x) really (truly) takes, via all the 
limiting points of this set. Then the extended range is a  closed set  and contains, in particular, the 
supremum value fsup .
3.  Extend the domain of function f(x),  i.e.  the set of  points  at  which function f(x)  is  properly 
defined, via all  the limiting points of this set.  Then the extended domain is a closed set which 
contains all its limiting points.
4. Admit modes to also correspond to the one-sided limits of function f(x) separately if necessary. 
This is important for discontinuous function f(x) with jumps.
5. At any interval endpoint ci , along with the given value of f(ci), take into account the one-sided 
limits Li and Ri of function f(x), e.g. any of the following reasonable options for value f(ci):
5.1. Take the given value of f(ci) itself.
5.2. Take

f(ci) = max{Li , Ri}.
5.3. Take

f(ci) = (Li + Ri)/2.
6. At any interval endpoint ci , along with ci itself, take into account the one-sided limiting points ci - 
0 and ci + 0 corresponding to one-sided limits Li and Ri of function f(x), respectively, e.g. any of the 
following reasonable options for ci :
6.1. Take the given value of ci itself.
6.2. For modes, rather than ci , consider

 ci - 0 if Li > Ri ,
ci + 0 if Li < Ri ,

and quantiset [Gelimson 2003a, 2003b] 
{1/2(ci - 0), 1/2(ci + 0)}° if Li = Ri .

This quantiset consists of two quantielements
1/2(ci - 0), 1/2(ci + 0)

with bases
ci - 0, ci + 0,

respectively.
Here each of elements ci - 0 and ci + 0 has quantity 1/2 so that the total unit quantity is equally 
divided between these both elements. 
In particular, for a  piecewise linear probability distribution with probability density function f(x), 
anyone of the following values can reasonably play the role of fsup :
max{max{f(ci) | i = 0, 1, 2, … , n + 1}, max{Li | i = 0, 1, … , n + 1}, max{Ri | i = 0, 1, … , n + 1}},

max{max{f(ci) | i = 0, 1, 2, … , n + 1}, max{(Li + Ri)/2 | i = 0, 1, 2, … , n + 1}},
max{max{Li | i = 0, 1, 2, … , n + 1}, max{Ri | i = 0, 1, 2, … , n + 1}},

max{(Li + Ri)/2 | i = 0, 1, 2, … , n + 1}.
If f(ci) = fsup at some i , then ci at this i is one of the modes.
If Li = fsup at some i , then ci - 0 at this i is one of the modes.
If Ri = fsup at some i , then ci + 0 at this i is one of the modes.
If (Li + Ri)/2 = fsup at some i , then quantiset

{1/2(ci - 0), 1/2(ci + 0)}°



at this i is one of the modes.
Nota bene: The set of all the modes contains the corresponding separate points ci , as well as one-
sided limits ci - 0 and ci + 0, and includes open intervals

ci < x < ci+1 (i = 1, 2, … , n - 1)
for which

Ri = Li+1 = fsup .



1.7. Variance

Use the common integral  definition  [Cramér]  of the variance σ2 of  a random variable X as its 
second central moment, namely the squared standard deviation σ , or the expected value of the 
squared deviation from the mean: 

σ2 = E[(X - μ)2] = ∫-∞
+∞ (x - μ)2f(x)dx .

In our case we determine
σ2 = ∫-∞

+∞ (x - μ)2f(x)dx = ∫a
b (x - μ)2f(x)dx = Σi=0

n ∫c(i)
c(i+1) (x - μ)2f(x)dx

= Σi=0
n ∫c(i)

c(i+1) [Ri(x2 - 2μx + μ2)(ci+1 - x) + Li+1(x2 - 2μx + μ2)(x - ci)]/(ci+1 - ci) dx
= Σi=0

n ∫c(i)
c(i+1) {Ri[- x3 + (2μ + ci+1)x2 - (μ2 + 2μci+1)x + μ2ci+1] 

+ Li+1[x3 - (2μ + ci)x2 + (μ2 + 2μci)x - μ2ci]}/(ci+1 - ci) dx
= Σi=0

n {Ri[- (ci+1
4 - ci

4)/4 + (2μ + ci+1)(ci+1
3 - ci

3)/3 - (μ2 + 2μci+1)(ci+1
2 - ci

2)/2 + μ2ci+1(ci+1 - ci)]
+ Li+1[(ci+1

4 - ci
4)/4 - (2μ + ci)(ci+1

3 - ci
3)/3 + (μ2 + 2μci)(ci+1

2 - ci
2)/2 - μ2ci(ci+1 - ci)]}/(ci+1 - ci)

= 1/12 Σi=0
n {Ri[- 3ci+1

3 - 3ci+1
2ci - 3ci+1ci

2 - 3ci
3 + (4ci+1 + 8μ)(ci+1

2 + ci+1ci + ci
2) - (12μci+1 + 6μ2)(ci+1 + 

ci) + 12μ2ci+1]
+ Li+1[3ci+1

3 + 3ci+1
2ci + 3ci+1ci

2 + 3ci
3 - (4ci + 8μ)(ci+1

2 + ci+1ci + ci
2) + (12μci + 6μ2)(ci+1 + ci) - 12μ2ci]}

= 1/12 Σi=0
n [Ri(- 3ci+1

3 - 3ci+1
2ci - 3ci+1ci

2 - 3ci
3 + 4ci+1

3 + 4ci+1
2ci + 4ci+1ci

2 + 8μci+1
2 + 8μci+1ci + 8μci

2 - 
12μci+1

2 - 12μci+1ci - 6μ2ci+1 - 6μ2ci + 12μ2ci+1)
+ Li+1(3ci+1

3 + 3ci+1
2ci + 3ci+1ci

2 + 3ci
3 - 4ci+1

2ci - 4ci+1ci
2 - 4ci

3 - 8μci+1
2 - 8μci+1ci - 8μci

2 + 12μci+1ci + 
12μci

2 + 6μ2ci+1 + 6μ2ci - 12μ2ci)]
= 1/12 Σi=0

n [Ri(ci+1
3 + ci+1

2ci + ci+1ci
2 - 3ci

3 - 4μci+1
2 - 4μci+1ci + 8μci

2 + 6μ2ci+1 - 6μ2ci)
+ Li+1(3ci+1

3 - ci+1
2ci - ci+1ci

2 - ci
3 - 8μci+1

2 + 4μci+1ci + 4μci
2 + 6μ2ci+1 - 6μ2ci)]

= 1/12 Σi=0
n (ci+1 - ci)[Ri(ci+1

2 + ci+1ci + ci
2 + ci+1ci + ci

2 + ci
2 - 4μci+1 - 4μci - 4μci + 6μ2)

+ Li+1(ci+1
2 + ci+1ci + ci

2 + ci+1ci + ci+1
2 + ci+1

2 - 4μci+1 - 4μci+1 - 4μci + 6μ2)]
= 1/12 Σi=0

n (ci+1 - ci)[Ri(ci+1
2 + 2ci+1ci + 3ci

2 - 4μci+1 - 8μci + 6μ2)
+ Li+1(3ci+1

2 + 2ci+1ci + ci
2 - 8μci+1 - 4μci + 6μ2)]

and, finally,
σ2 = Σi=0

n (ci+1 - ci)[Ri(ci+1
2 + 2ci+1ci + 3ci

2 - 4μci+1 - 8μci + 6μ2)
+ Li+1(3ci+1

2 + 2ci+1ci + ci
2 - 8μci+1 - 4μci + 6μ2)]/12

where
μ = Σi=0

n (ci+1 - ci)[Ri(2ci + ci+1) + Li+1(ci + 2ci+1)]/6.
Nota bene: Similarly, we can also determine further initial and central moments etc. [Cramér], e.g. 
skewness

γ1 = E[(X - μ)3/σ3]
and excess 

γ2 = E[(X - μ)4/σ4] - 3.



2. Piecewise Linear Continuous Probability Distribution

2.1. Main Definitions

Consider a general one-dimensional piecewise linear continuous probability distribution (Fig. 2) as 
a particular case of a general one-dimensional piecewise linear probability distribution.
 

Fig. 2. General one-dimensional piecewise linear continuous probability distribution

Here probability density distribution function f(x) is as always non-negative everywhere (-∞ < x < 
+∞) and can be positive on some finite segment (closed interval)

-∞ < a ≤ x ≤ b < +∞ (a < b)
only. Let n (n  N = {1, 2, ...}) intermediate points c∈ 1 , c2 , c3 , c4 , … , cn-3 , cn-2 , cn-1 , cn in the non-
decreasing order so that

a ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ … ≤ cn-3 ≤ cn-2 ≤ cn-1 ≤ cn ≤ b
divide this segment into n + 1 parts (pieces) of generally different lengths. To unify the notation,  
denote

c0 = a ,
cn+1 = b ,

c(i) = ci (i = 0, 1, 2, … , n + 1).
On each of n + 1 closed intervals

 ci ≤ x ≤ ci+1 (i = 0, 1, 2, … , n),
probability density distribution function f(x) is linear. At n + 2 points

ci (i = 0, 1, 2, … , n + 1),
f(x) takes finite non-negative values

Hi = f(ci),
respectively. Naturally, we have

 H0 = 0,
  Hn+1 = 0.

Note that
Hi = f(ci) (i = 1, 2, … , n)

may be any finite non-negative values. At each of n + 2 points
ci (i = 0, 1, 2, … , n + 1),

left and right one-sided limits



lim f(x) = Li (x → ci - 0),
lim f(x) = Ri (x → ci + 0)

are equal to one another and coincide with f(ci). Therefore, we obtain
Hi = Li = Ri (i = 0, 1, 2, … , n + 1),

which makes it possible to apply the above formulas for a piecewise linear probability distribution 
to a piecewise linear continuous probability distribution.
Then on each of n + 1 closed intervals

 ci ≤ x ≤ ci+1 (i = 0, 1, 2, … , n),
linear probability density distribution function

f(x) = Hi + (Hi+1 - Hi)(x - ci)/(ci+1 - ci)
= Hi(ci+1 - x)/(ci+1 - ci) + Hi+1(x - ci)/(ci+1 - ci).

Integral (cumulative) probability distribution function
F(x) = P(X ≤ x) = ∫-∞

x f(t)dt
is probability P(X ≤ x) that real-number random variable X takes a real-number value not greater 
than x .



2.2. Normalization Condition

The probability of the event that X takes any finite real value is namely 1 because this event is  
certain. This gives integral normalization condition

∫-∞
+∞ f(x)dx = 1.

Use  the  corresponding  formula  for  a  piecewise  linear  probability  distribution.  Then  in  our 
continuous case we determine

1 = ∫-∞
+∞ f(x)dx = ∫a

b f(x)dx
= Σi=0

n (Ri + Li+1)(ci+1 - ci)/2
= Σi=0

n (Hi + Hi+1)(ci+1 - ci)/2
= Σi=0

n Hi(ci+1 - ci)/2 + Σi=0
n Hi+1(ci+1 - ci)/2.

We can also obtain this result at once rather geometrically than analytically, namely via adding the 
areas of the n + 1 rectangular trapezoids, among them 2 rectangular triangles at the endpoints a and 
b .
Now use

 H0 = 0,
  Hn+1 = 0.

Then
1 = ∫-∞

+∞ f(x)dx = Σi=1
n Hi(ci+1 - ci)/2 + Σi=1

n Hi(ci - ci-1)/2
= Σi=1

n Hi(ci+1 - ci-1)/2.
Therefore, to provide a possible (an admissible) probability density distribution function, necessary 
and sufficient integral normalization condition

Σi=1
n Hi(ci+1 - ci-1) = 2

has to be satisfied.



2.3. Normalization Algorithm

Nota bene: This is one condition for
n + (n + 2) = 2n + 2

unknowns
Hi (i = 1, 2, … , n),

ci (i = 0, 1, 2, … , n + 1).
Additionally,

Hi ≥ 0 (i = 1, 2, 3, … , n),
c0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ … ≤ cn-3 ≤ cn-2 ≤ cn-1 ≤ cn ≤ cn+1 .

Generally, it is not possible to simply take any admissible values of
 2n + 2 - 1 = 2n + 1

unknowns and then to determine the value of the remaining unknown via this condition because it 
can happen that this value is inadmissible.
A natural idea, way, and algorithm to avoid this difficulty are as follows:
1. Fix

c0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤ … ≤ cn-3 ≤ cn-2 ≤ cn-1 ≤ cn ≤ cn+1 .
2. Take any

Hi' ≥ 0 (i = 1, 2, … , n)
so that there is at least one namely positive number among these n non-negative numbers.
3. Let

Hi (i = 1, 2, 3, … , n)
be proportional to

Hi' ≥ 0 (i = 1, 2, 3, … , n),
respectively, with a common namely positive factor k so that

Hi = kHi' (i = 1, 2, 3, … , n).
4.  Explicitly  determine  the  value  of  parameter  k  as  the  only  unknown via  this  necessary  and 
sufficient integral normalization condition

Σi=1
n Hi(ci+1 - ci-1) = 2

so that
k = 2 / Σi=0

n Hi'(ci+1 - ci-1).
5. Explicitly determine

Hi = kHi' (i = 1, 2, 3, … , n).



2.4. Mean Value (Mathematical Expectation)

Take the common integral definition [Cramér] of the mean value (mathematical expectation)
μ = E(X) = ∫-∞

+∞ xf(x)dx .
Use  the  corresponding  formula  for  a  piecewise  linear  probability  distribution.  Then  in  our 
continuous case we determine

μ = ∫-∞
+∞ xf(x)dx = ∫a

b xf(x)dx
= Σi=0

n (ci+1 - ci)[Ri(2ci + ci+1) + Li+1(ci + 2ci+1)]/6
= 1/6 Σi=0

n (ci+1 - ci)[Hi(ci+1 + 2ci) + Hi+1(2ci+1 + ci)]
= 1/6 Σi=0

n (ci+1 - ci)Hi(ci+1 + 2ci) + 1/6 Σi=0
n (ci+1 - ci)Hi+1(2ci+1 + ci)

= 1/6 Σi=1
n (ci+1 - ci)Hi(ci+1 + 2ci) + 1/6 Σi=1

n (ci - ci-1)Hi(2ci + ci-1)
= 1/6 Σi=1

n Hi[(ci+1 - ci)(ci+1 + 2ci) + (ci - ci-1)(2ci + ci-1)]
= 1/6 Σi=1

n Hi(ci+1
2 + ci+1ci - 2ci

2 + 2ci
2 - cici-1 - ci-1

2)
= 1/6 Σi=1

n Hi(ci+1
2 + ci+1ci - cici-1 - ci-1

2)
= 1/6 Σi=1

n Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)
and, finally,

μ = Σi=1
n Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6.



2.5. Median Values

Use the common integral definition [Cramér] of median values ν for any of which both
P(X ≤ ν) ≥ 1/2

and
P(X ≥ ν) ≥ 1/2.

For a continual real-number random variable X ,
P(X ≤ ν) = ∫-∞

ν f(x)dx = P(X ≥ ν) = ∫ν
+∞ f(x)dx = 1/2.

To determine the set  of all  the median values ν  ,  we can use the same natural idea,  way,  and 
algorithm as for a general one-dimensional piecewise linear probability distribution but, naturally, 
with  the  formulas  for  a  general  one-dimensional  piecewise  linear  continuous  probability 
distribution.



2.6. Mode Values

To  begin  with,  consider  the  common  definition  [Cramér]  of  mode  values  for  any  of  which 
probability density distribution function f(x) takes its maximum value fmax .
In  particular,  for a  piecewise  linear  continuous  probability distribution with probability density 
function f(x),

fmax = max{f(ci) | i = 1, 2, … , n}.
If f(x) = fmax at some x , then this x is one of the modes.
In particular, if f(ci) = fmax at some i , then ci at this i is one of the modes.
Nota bene: The set of all the modes both contains separate points

ci (i = 1, 2, … , n)
for which

f(ci) = fsup = fmax

and includes closed intervals
ci ≤ x ≤ ci+1 (i = 1, 2, … , n - 1)

for which
f(ci) = f(ci+1) = fsup = fmax .



2.7. Variance

Take the common integral definition  [Cramér]  of the variance σ2 of a random variable X as its 
second central moment, namely the squared standard deviation σ , or the expected value of the 
squared deviation from the mean: 

σ2 = E[(X - μ)2] = ∫-∞
+∞ (x - μ)2f(x)dx = ∫a

b (x - μ)2f(x)dx .
Use  the  corresponding  formula  for  a  piecewise  linear  probability  distribution.  Then  in  our 
continuous case we determine

σ2 = Σi=0
n (ci+1 - ci)[Ri(ci+1

2 + 2ci+1ci + 3ci
2 - 4μci+1 - 8μci + 6μ2)

+ Li+1(3ci+1
2 + 2ci+1ci + ci

2 - 8μci+1 - 4μci + 6μ2)]/12
= Σi=0

n (ci+1 - ci)[Hi(ci+1
2 + 2ci+1ci + 3ci

2 - 4μci+1 - 8μci + 6μ2)
+ Hi+1(3ci+1

2 + 2ci+1ci + ci
2 - 8μci+1 - 4μci + 6μ2)]/12

= Σi=0
n (ci+1 - ci)Hi(ci+1

2 + 2ci+1ci + 3ci
2 - 4μci+1 - 8μci + 6μ2)/12

+ Σi=0
n (ci+1 - ci)Hi+1(3ci+1

2 + 2ci+1ci + ci
2 - 8μci+1 - 4μci + 6μ2)/12

= Σi=1
n (ci+1 - ci)Hi(ci+1

2 + 2ci+1ci + 3ci
2 - 4μci+1 - 8μci + 6μ2)/12

+ Σi=0
n-1 (ci+1 - ci)Hi+1(3ci+1

2 + 2ci+1ci + ci
2 - 8μci+1 - 4μci + 6μ2)/12

= Σi=1
n (ci+1 - ci)Hi(ci+1

2 + 2ci+1ci + 3ci
2 - 4μci+1 - 8μci + 6μ2)/12

+ Σi=1
n (ci - ci-1)Hi(3ci

2 + 2cici-1 + ci-1
2 - 8μci - 4μci-1 + 6μ2)/12

= Σi=1
n Hi(ci+1

3 + 2ci+1
2 ci + 3ci+1ci

2 - 4μci+1
2 - 8μci+1ci + 6μ2ci+1

- ci+1
2ci - 2ci+1ci

2 - 3ci
3 + 4μci+1ci + 8μci

2 - 6μ2ci

+ 3ci
3 + 2ci

2ci-1 + cici-1
2 - 8μci

2 - 4μcici-1 + 6μ2ci

- 3ci
2ci-1 - 2cici-1

2 - ci-1
3 + 8μcici-1 + 4μci-1

2 - 6μ2ci-1)/12
= Σi=1

n Hi(ci+1
3 + ci+1

2ci + ci+1ci
2 - ci

2ci-1 - cici-1
2 - ci-1

3

- 4μci+1
2 - 4μci+1ci + 4μcici-1 + 4μci-1

2 + 6μ2ci+1 - 6μ2ci-1)/12
= Σi=1

n Hi(ci+1 - ci-1)(ci+1
2 + ci+1ci-1 + ci-1

2 + ci+1ci + cici-1 + ci
2

- 4μci+1 - 4μci-1 - 4μci + 6μ2)/12
and, finally,

σ2 = Σi=1
n Hi(ci+1 - ci-1)[ci+1

2 + ci
2 + ci-1

2 + ci+1ci + ci+1ci-1 + cici-1 - 4μ(ci+1 + ci + ci-1) + 6μ2]/12
where

μ = Σi=1
n Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6.

Nota bene: Similarly, we can also determine further initial and central moments etc. [Cramér], e.g. 
skewness

γ1 = E[(X - μ)3/σ3]
and excess 

γ2 = E[(X - μ)4/σ4] - 3.



3. Tetragonal Probability Distribution

3.1. Main Definitions

A tetragonal  probability  distribution  (Fig.  3)  is  a  particular  case  of  a  general  one-dimensional 
piecewise  linear  continuous  probability  distribution  for  n  =  2  and  further  of  a  general  one-
dimensional piecewise linear probability distribution. Therefore, directly apply the above formulas 
for a general one-dimensional piecewise linear continuous probability distribution to a tetragonal 
probability distribution.
 

Fig. 3. Tetragonal probability distribution

Here probability density distribution function f(x) is as always non-negative everywhere (-∞ < x < 
+∞) and can be positive on some finite segment (closed interval)

-∞ < a ≤ x ≤ b < +∞ (a < b)
only. Let n = 2 intermediate points c = c1 and d = c2 in the non-decreasing order so that

a ≤ c1 ≤ c2 ≤ b
divide this segment into n + 1 = 3 parts (pieces) of generally different lengths. To unify the notation, 
denote

c0 = a ,
c3 = b ,

c(i) = ci (i = 0, 1, 2, 3).
On each of n + 1 = 3 closed intervals

 ci ≤ x ≤ ci+1 (i = 0, 1, 2),
probability density distribution function f(x) is linear. At n + 2 = 4 points

ci (i = 0, 1, 2, 3),
f(x) takes finite non-negative values

Hi = f(ci),
respectively. Naturally, we have

 H0 = 0,
  H3 = 0.

Note that
Hi = f(ci) (i = 1, 2)

with additional natural notation



C = H1 ,
D = H2

for values f(x) at points
c = c1 ,
d = c2 ,

respectively, may be any finite non-negative values. At each of n + 2 = 4 points
ci (i = 0, 1, 2, 3),

left and right one-sided limits
lim f(x) = Li (x → ci - 0),
lim f(x) = Ri (x → ci + 0)

are equal to one another and coincide with f(ci). Therefore, we obtain
Hi = Li = Ri (i = 0, 1, 2, 3).

Then on each of n + 1 = 3 closed intervals
 ci ≤ x ≤ ci+1 (i = 0, 1, 2),

linear probability density distribution function
f(x) = Hi + (Hi+1 - Hi)(x - ci)/(ci+1 - ci)

= Hi(ci+1 - x)/(ci+1 - ci) + Hi+1(x - ci)/(ci+1 - ci).
Integral (cumulative) probability distribution function

F(x) = P(X ≤ x) = ∫-∞
x f(t)dt

is probability P(X ≤ x) that real-number random variable X takes a real-number value not greater 
than x .



3.2. Normalization Condition

The probability of the event that X takes any finite real value is namely 1 because this event is  
certain. This gives integral normalization condition

∫-∞
+∞ f(x)dx = 1.

Use the corresponding formula for a piecewise linear continuous probability distribution. Then in 
our case n = 2 we determine

1 = ∫-∞
+∞ f(x)dx = ∫a

b f(x)dx
= Σi=1

n Hi(ci+1 - ci-1)/2
= Σi=1

2 Hi(ci+1 - ci-1)/2.
We can also obtain this result at once rather geometrically than analytically, namely via adding the 
areas of the n + 1 = 3 rectangular trapezoids, among them 2 rectangular triangles at the endpoints a 
and b .
Therefore, to provide a possible (an admissible) probability density distribution function, necessary 
and sufficient integral normalization condition

Σi=1
2 Hi(ci+1 - ci-1) = 2

has to be satisfied.
Using

c0 = a ,
c1 = c ,
c2 = d ,
c3 = b ,
H1 = C ,
H2 = D ,

we obtain
H1(c2 - c0) + H2(c3 - c1) = C(d - a) + D(b - c)

and, finally,
C(d - a) + D(b - c) = 2.



3.3. Normalization Algorithm

Nota bene: This is one condition for
n + (n + 2) = 2n + 2 = 6

unknowns
Hi (i = 1, 2),

ci (i = 0, 1, 2, 3).
Additionally,

Hi ≥ 0 (i = 1, 2),
c0 ≤ c1 ≤ c2 ≤ c3 .

Generally, it is not possible to simply take any admissible values of
 2n + 2 - 1 = 2n + 1 = 5

unknowns and then to determine the value of the remaining unknown via this condition because it 
can happen that this value is inadmissible.
A natural idea, way, and algorithm to avoid this difficulty are as follows:
1. Fix

c0 ≤ c1 ≤ c2 ≤ c3 .
2. Take any

Hi' ≥ 0 (i = 1, 2)
so that there is at least one namely positive number among these n = 2 non-negative numbers.
3. Let

Hi (i = 1, 2)
be proportional to

Hi' ≥ 0 (i = 1, 2),
respectively, with a common namely positive factor k so that

Hi = kHi' (i = 1, 2).
4.  Explicitly  determine  the  value  of  parameter  k  as  the  only  unknown via  this  necessary  and 
sufficient integral normalization condition

Σi=1
2 Hi(ci+1 - ci-1) = 2

so that
k = 2 / Σi=0

2 Hi'(ci+1 - ci-1).
5. Explicitly determine

Hi = kHi' (i = 1, 2).
Using

c0 = a ,
c1 = c ,
c2 = d ,
c3 = b ,
H1 = C ,
H2 = D

and naturally denoting
H1' = C' ,
H2' = D' ,

we obtain the same algorithm in the following form:
1. Fix

a ≤ c ≤ d ≤ b .
2. Take any

C' ≥ 0,
D' ≥ 0

so that there is at least one namely positive number among these n = 2 non-negative numbers.
3. Let C and D be proportional to C' and D', respectively, with a common namely positive factor k  



so that
C = kC' ,
D = kD' .

4.  Explicitly  determine  the  value  of  parameter  k  as  the  only  unknown via  this  necessary  and 
sufficient integral normalization condition

C(d - a) + D(b - c) = 2
so that

k = 2/[C'(d - a) + D'(b - c)].
5. Explicitly determine

C = kC' ,
D = kD' .



3.4. Mean Value (Mathematical Expectation)

Take the common integral definition [Cramér] of the mean value (mathematical expectation)
μ = E(X) = ∫-∞

+∞ xf(x)dx .
Use the corresponding formula for a piecewise linear continuous probability distribution. Then in 
our case n = 2 we determine

μ = ∫-∞
+∞ xf(x)dx = ∫a

b xf(x)dx
= Σi=1

n Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6
= Σi=1

2 Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6.
Using

c0 = a ,
c1 = c ,
c2 = d ,
c3 = b ,
H1 = C ,
H2 = D ,

we obtain the same formula in the following form:
μ = [H1(c2 - c0)(c2 + c1 + c0) + H2(c3 - c1)(c3 + c2 + c1)]/6,

μ = [C(d - a)(d + c + a) + D(b - c)(b + d + c)]/6,
and, finally,

μ = [C(d - a)(a + c + d) + D(b - c)(b + c + d)]/6.



3.5. Median Values

Use the common integral definition [Cramér] of median values ν for any of which both
P(X ≤ ν) ≥ 1/2

and
P(X ≥ ν) ≥ 1/2.

For a continual real-number random variable X ,
P(X ≤ ν) = ∫-∞

ν f(x)dx = P(X ≥ ν) = ∫ν
+∞ f(x)dx = 1/2.

To determine the set  of all  the median values ν  ,  we can use the same natural  idea,  way,  and 
algorithm as for a general one-dimensional piecewise linear probability distribution but, naturally, 
with the formulas for a tetragonal probability distribution.
But using n = 2, make the same natural idea, way, and algorithm much more explicit:
1. First determine both

F(c) = ∫-∞
c f(x)dx = ∫a

c f(x)dx = ∫a
c C(x - a)/(c - a) dx

= C/(c - a) ∫a
c(x - a)dx = C/(c - a) [(c2 - a2)/2 - a(c - a)] 
= C[(c + a)/2 - a] = C(c - a)/2

and
F(d) = 1 - ∫d

+∞ f(x)dx = 1 - ∫d
bf(x)dx = 1 - ∫d

b D(b - x)/(b - d) dx
= 1 - D/(b - d) ∫d

b(b - x)dx = 1 - D/(b - d) [b(b - d) - (b2 - d2)/2] 
= 1 - D[b - (b + d)/2] = 1 - D(b - d)/2.

2. If
F(c) > 1/2,

or, equivalently,
C(c - a) > 1,

then there is the only median value ν strictly between a and c so that
F(ν) = 1/2,

F(ν) = ∫-∞
ν f(x)dx = ∫a

ν f(x)dx = ∫a
ν C(x - a)/(c - a) dx

= C/(c - a) ∫a
ν(x - a)dx = C/(c - a) [(ν2 - a2)/2 - a(ν - a)] 

= C/(c - a) (ν - a)2/2 = 1/2,
(ν - a)2 = (c - a)/C ,

ν = a + [(c - a)/C]1/2 .
3. If

F(c) = 1/2,
or, equivalently,

C(c - a) = 1,
then there is the only median value

ν = c .
4. If

F(d) < 1/2,
or, equivalently,

1 - D(b - d)/2 < 1/2,
D(b - d) > 1,

then there is the only median value ν strictly between d and b so that
F(ν) = 1/2,

F(ν) = 1 - ∫ν
+∞ f(x)dx = 1 - ∫ν

bf(x)dx = 1 - ∫ν
b D(b - x)/(b - d) dx

= 1 - D/(b - d) ∫ν
b(b - x)dx = 1 - D/(b - d) [b(b - ν) - (b2 - ν2)/2] 
= 1 - D/(b - d) (b - ν)2/2 = 1/2,

D/(b - d) (b - ν)2 = 1,
 (b - ν)2 = (b - d)/D ,
ν = b - [(b - d)/D]1/2 .

5. If



F(d) = 1/2,
or, equivalently,

1 - D(b - d)/2 = 1/2,
D(b - d) = 1,

then there is the only median value
ν = d .

6. Finally, if
F(c) < 1/2 < F(d),

or, equivalently,
C(c - a) < 1

and
D(b - d) < 1,

then there is the only median value ν strictly between c and d (c < ν < d) because incremental 
distribution function F(c) strictly monotonically increases on this interval (c , d) so that

F(ν) = 1/2,
F(ν) = ∫-∞

ν f(x)dx = ∫a
ν f(x)dx = ∫a

c f(x)dx + ∫c
ν f(x)dx

= F(c) + ∫c
ν [C(d - x) + D(x - c)]/(d - c) dx

= C(c - a)/2 + {C[d(ν - c) - (ν2 - c2)/2] + D[(ν2 - c2)/2 - c(ν - c)]}/(d - c)
= C(c - a)/2 + [(Cd - Dc)(ν - c) + (D - C)(ν2 - c2)/2]/(d - c) = 1/2,

C(c - a)(d - c) + 2(Cd - Dc)(ν - c) + (D - C)(ν2 - c2) = d - c ,
(D - C)ν2 + 2(Cd - Dc)ν + C(c - a)(d - c) - 2(Cd - Dc)c - (D - C)c2 + c - d = 0.

6.1. If D = C and, naturally, positive, then
2C(d - c)ν + C(c - a)(d - c) - 2C(d - c)c + c - d = 0,

2Cν = 1 + C(a + c),
ν = 1/(2C) + (a + c)/2.

Directly moving from left to right, we also obtain the same result
 ν = c + [1/2 - C(c - a)/2]/C

at once. We have
ν - c = 1/(2C) + (a - c)/2 > 0

because
C(c - a) < 1.

Directly moving from right to left, we obtain
 ν = d - [1/2 - C(b - d)/2]/C = - 1/(2C) + d + (b - d)/2 = (b + d)/2 - 1/(2C)

at once. We have
d - ν = d + 1/(2C) - (b + d)/2 > 0

because
C(b - d) < 1.

To prove the equivalence of these both formulas
ν = 1/(2C) + (a + c)/2

and
 ν = (b + d)/2 - 1/(2C)

for ν , note that
1/(2C) + (a + c)/2 = (b + d)/2 - 1/(2C)

because the normalization condition
C(c - a)/2 + C(d - c) + C(b - d)/2 = 1

gives
(b - a + d - c)/2 = 1/C .

6.2. If D ≠ C , then there is the only median value ν strictly between c and d (c < ν < d) because 
incremental distribution function F(c) strictly monotonically increases on this interval (c , d) so that

F(ν) = 1/2.
Hence quadratic equation

(D - C)ν2 + 2(Cd - Dc)ν + C(c - a)(d - c) - 2(Cd - Dc)c - (D - C)c2 + c - d = 0



in ν has exactly one solution on this interval (c , d).



3.6. Mode Values

To  begin  with,  consider  the  common  definition  [Cramér]  of  mode  values  for  any  of  which 
probability density distribution function f(x) takes its maximum value fmax .
If C = D and, naturally, positive, then there are two modes c and d .
If C > D , then there is the only mode c .
If C < D , then there is the only mode d .



3.7. Variance

Take the common integral definition  [Cramér]  of the variance σ2 of a random variable X as its 
second central moment, namely the squared standard deviation σ , or the expected value of the 
squared deviation from the mean: 

σ2 = E[(X - μ)2] = ∫-∞
+∞ (x - μ)2f(x)dx .

Use the corresponding formula for a piecewise linear continuous probability distribution. Then in 
our case n = 2 we determine

σ2 = ∫-∞
+∞ (x - μ)2f(x)dx = ∫a

b (x - μ)2f(x)dx
= Σi=1

n Hi(ci+1 - ci-1)[ci+1
2 + ci

2 + ci-1
2 + ci+1ci + ci+1ci-1 + cici-1 - 4μ(ci+1 + ci + ci-1) + 6μ2]/12

= Σi=1
2 Hi(ci+1 - ci-1)[ci+1

2 + ci
2 + ci-1

2 + ci+1ci + ci+1ci-1 + cici-1 - 4μ(ci+1 + ci + ci-1) + 6μ2]/12
where

μ = Σi=1
2 Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6.

Using
c0 = a ,
c1 = c ,
c2 = d ,
c3 = b ,
H1 = C ,
H2 = D ,

we obtain the same formulas in the following forms:
μ = [H1(c2 - c0)(c2 + c1 + c0) + H2(c3 - c1)(c3 + c2 + c1)]/6,

μ = [C(d - a)(a + c + d) + D(b - c)(b + c + d)]/6,
as well as

σ2 = H1(c2 - c0)[c2
2 + c1

2 + c0
2 + c2c1 + c2c0 + c1c0 - 4μ(c2 + c1 + c0) + 6μ2]

+ H2(c3 - c1)[c3
2 + c2

2 + c1
2 + c3c2 + c3c1 + c2c1 - 4μ(c3 + c2 + c1) + 6μ2]}/12

= {C(d - a)[d2 + c2 + a2 + dc + da + ca - 4μ(d + c + a) + 6μ2]
+ D(b - c)[b2 + d2 + c2 + bd + bc + dc - 4μ(b + d + c) + 6μ2]}/12.

Finally,
σ2 = {C(d - a)[a2 + c2 + d2 + ac + ad + cd - 4μ(a + c + d) + 6μ2]

+ D(b - c)[b2 + c2 + d2 + bc + bd + cd - 4μ(b + c + d) + 6μ2]}/12.
Nota bene: Similarly, we can also determine further initial and central moments etc. [Cramér], e.g. 
skewness

γ1 = E[(X - μ)3/σ3]
and excess 

γ2 = E[(X - μ)4/σ4] - 3.



4. Piecewise Linear Probability Distribution Formulas 
Verification via a Triangular Probability Distribution

4.1. Main Definitions

Verify  formulas  for  a  general  one-dimensional  piecewise  linear  probability  distribution  using 
formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a  triangular  probability 
distribution  as  a  particular  case  of  a  general  one-dimensional  piecewise  linear  continuous 
probability  distribution for  n  =  1 and  further  of  a  general  one-dimensional  piecewise  linear 
probability distribution. Therefore, directly apply the above formulas for a general one-dimensional 
piecewise linear continuous probability distribution (or, alternatively, for a  tetragonal probability 
distribution) to a triangular probability distribution (Fig. 4).
 

Fig. 4. Triangular probability distribution

Here probability density distribution function f(x) is as always non-negative everywhere (-∞ < x < 
+∞) and can be positive on some finite segment (closed interval)

-∞ < a ≤ x ≤ b < +∞ (a < b)
only. Let n = 1 intermediate point c = c1 so that

a ≤ c1 ≤ b
divide this segment into n + 1 = 2 parts (pieces) of generally different lengths. To unify the notation, 
denote

c0 = a ,
c2 = b ,

c(i) = ci (i = 0, 1, 2).
On each of n + 1 = 2 closed intervals

 ci ≤ x ≤ ci+1 (i = 0, 1),
probability density distribution function f(x) is linear. At n + 2 = 3 points

ci (i = 0, 1, 2),
f(x) takes finite non-negative values

Hi = f(ci),
respectively. Naturally, we have

 H0 = 0,
  H2 = 0.



Note that
H1 = f(c1)

with additional natural notation
C = H1

for value f(x) at point
c = c1

may be any finite positive value. At each of n + 2 = 3 points
ci (i = 0, 1, 2),

left and right one-sided limits
lim f(x) = Li (x → ci - 0),
lim f(x) = Ri (x → ci + 0)

are equal to one another and coincide with f(ci). Therefore, we obtain
Hi = Li = Ri (i = 0, 1, 2).

Then on each of n + 1 = 2 closed intervals
 ci ≤ x ≤ ci+1 (i = 0, 1),

linear probability density distribution function
f(x) = Hi + (Hi+1 - Hi)(x - ci)/(ci+1 - ci)

= Hi(ci+1 - x)/(ci+1 - ci) + Hi+1(x - ci)/(ci+1 - ci).
Integral (cumulative) probability distribution function

F(x) = P(X ≤ x) = ∫-∞
x f(t)dt

is probability P(X ≤ x) that real-number random variable X takes a real-number value not greater 
than x .



4.2. Normalization Condition

The probability of the event that X takes any finite real value is namely 1 because this event is  
certain. This gives integral normalization condition

∫-∞
+∞ f(x)dx = 1.

Use the corresponding formula for a piecewise linear continuous probability distribution. Then in 
our case n = 1 we determine

1 = ∫-∞
+∞ f(x)dx = ∫a

b f(x)dx
= Σi=1

n Hi(ci+1 - ci-1)/2 = Σi=1
1 Hi(ci+1 - ci-1)/2 = H1(c2 - c0).

We can also obtain this result at once rather geometrically than analytically, namely via adding the 
areas of the 2 rectangular triangles.
Therefore, to provide a possible (an admissible) probability density distribution function, necessary 
and sufficient integral normalization condition

H1(c2 - c0) = 2
has to be satisfied.
Using

c0 = a ,
c1 = c ,
c2 = b ,
H1 = C ,

we obtain
H1(c2 - c0) = C(b - a)

and, finally,
C(b - a) = 2,
C = 2/(b - a).

The  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a  triangular 
probability distribution give the same result.



4.3. Mean Value (Mathematical Expectation)

Take the common integral definition [Cramér] of the mean value (mathematical expectation)
μ = E(X) = ∫-∞

+∞ xf(x)dx .
Use the corresponding formula for a piecewise linear continuous probability distribution. Then in 
our case n = 1 we determine

μ = ∫-∞
+∞ xf(x)dx = ∫a

b xf(x)dx
= Σi=1

n Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6
= Σi=1

1 Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6
and, finally,

μ = H1(c2 - c0)(c2 + c1 + c0)/6.
Using

c0 = a ,
c1 = c ,
c2 = b ,
H1 = C ,

we obtain the same formula in the following form:
μ = C(b - a)(b + c + a)/6.

Using
C = 2/(b - a),

finally obtain
μ = (a + b + c)/3.

The  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a  triangular 
probability distribution give the same result.



4.4. Median Values

Use the common integral definition [Cramér] of median values ν for any of which both
P(X ≤ ν) ≥ 1/2

and
P(X ≥ ν) ≥ 1/2.

For a continual real-number random variable X ,
P(X ≤ ν) = ∫-∞

ν f(x)dx = P(X ≥ ν) = ∫ν
+∞ f(x)dx = 1/2.

To determine the set  of all  the median values ν  ,  we can use the same natural  idea,  way,  and 
algorithm as for a general one-dimensional piecewise linear probability distribution but, naturally, 
with the formulas for a triangular probability distribution.
But  using n = 1, as well as the corresponding algorithm and formulas for a  tetragonal probability 
distribution with

d = c ,
D = C ,

C = 2/(b - a),
make the same natural idea, way, and algorithm as for a general one-dimensional piecewise linear 
probability distribution much more explicit:
1. First determine

F(c) = ∫-∞
c f(x)dx = ∫a

c f(x)dx = ∫a
c C(x - a)/(c - a) dx

= C/(c - a) ∫a
c(x - a)dx = C/(c - a) [(c2 - a2)/2 - a(c - a)] 

= C[(c + a)/2 - a] = C(c - a)/2 = (c - a)/(b - a).
2. If

F(c) > 1/2,
or, equivalently,

c > (a + b)/2,
then there is the only median value ν strictly between a and c so that

F(ν) = 1/2,
F(ν) = ∫-∞

ν f(x)dx = ∫a
ν f(x)dx = ∫a

ν C(x - a)/(c - a) dx
= C/(c - a) ∫a

ν(x - a)dx = C/(c - a) [(ν2 - a2)/2 - a(ν - a)] 
= C/(c - a) (ν - a)2/2 = 1/2,

(ν - a)2 = (c - a)/C ,
ν = a + [(c - a)/C]1/2 ,

ν = a + [(b - a)(c - a)/2]1/2 .
The  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a  triangular 
probability distribution give the same result.
3. If

F(c) = 1/2,
or, equivalently,

c = (a + b)/2,
then there is the only median value

ν = c = (a + b)/2.
Naturally,  the  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a 
triangular probability distribution give the same obvious result.
4. If

F(c) < 1/2,
or, equivalently,

c < (a + b)/2,
then there is the only median value ν strictly between c and b so that

F(ν) = 1/2,
F(ν) = 1 - ∫ν

+∞ f(x)dx = 1 - ∫ν
bf(x)dx = 1 - ∫ν

b C(b - x)/(b - c) dx



= 1 - C/(b - c) ∫ν
b(b - x)dx = 1 - C/(b - c) [b(b - ν) - (b2 - ν2)/2] 
= 1 - C/(b - c) (b - ν)2/2 = 1/2,

C/(b - c) (b - ν)2 = 1,
 (b - ν)2 = (b - c)/C ,
ν = b - [(b - c)/C]1/2 

ν = b - [(b - a)(b - c)/2]1/2 .
The  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a  triangular 
probability distribution give the same result.
These three conditional formulas for the only median value ν can be unified as follows:

ν = (a + b)/2 + {[(b - a)(b - a + |2c - a - b|)]1/2 + a - b}/2 sign(2c - a - b).
In fact, we obtain:
1) by c > (a + b)/2,

ν = (a + b)/2 + {[(b - a)(b - a + 2c - a - b)]1/2 + a - b}/2
= (a + b)/2 + {[(b - a)(2c - 2a)]1/2 + a - b}/2

= a + [(b - a)(c - a)/2]1/2 ;
2) by c = (a + b)/2,

 ν = (a + b)/2;
3) by c < (a + b)/2,

ν = (a + b)/2 - {[(b - a)(b - a - 2c + a + b)]1/2 + a - b}/2
= (a + b)/2 - {[(b - a)(2b - 2c)]1/2 + a - b}/2

= b - [(b - a)(b - c)/2]1/2 .



4.5. Mode Values

To  begin  with,  consider  the  common  definition  [Cramér]  of  mode  values  for  any  of  which 
probability density distribution function f(x) takes its maximum value fmax .
In our case, there is the only mode c .
Naturally,  the  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a 
triangular probability distribution give the same obvious result.



4.6. Variance

Take the common integral definition  [Cramér]  of the variance σ2 of a random variable X as its 
second central moment, namely the squared standard deviation σ , or the expected value of the 
squared deviation from the mean: 

σ2 = E[(X - μ)2] = ∫-∞
+∞ (x - μ)2f(x)dx .

Use the corresponding formula for a piecewise linear continuous probability distribution. Then in 
our case n = 1 we determine

σ2 = ∫-∞
+∞ (x - μ)2f(x)dx = ∫a

b (x - μ)2f(x)dx
= Σi=1

n Hi(ci+1 - ci-1)[ci+1
2 + ci

2 + ci-1
2 + ci+1ci + ci+1ci-1 + cici-1 - 4μ(ci+1 + ci + ci-1) + 6μ2]/12

= Σi=1
1 Hi(ci+1 - ci-1)[ci+1

2 + ci
2 + ci-1

2 + ci+1ci + ci+1ci-1 + cici-1 - 4μ(ci+1 + ci + ci-1) + 6μ2]/12
and, finally,

σ2 = H1(c2 - c0)[c2
2 + c1

2 + c0
2 + c2c1 + c2c0 + c1c0 - 4μ(c2 + c1 + c0) + 6μ2]/12

where
μ = Σi=1

1 Hi(ci+1 - ci-1)(ci+1 + ci + ci-1)/6 = H1(c2 - c0)(c2 + c1 + c0)/6.
Using

c0 = a ,
c1 = c ,
c2 = b ,
H1 = C ,

C = 2/(b - a),
or, alternatively, the above formulas for a tetragonal probability distribution with

d = c ,
D = C ,

we obtain the same formulas in the following forms:
μ = C(b - a)(a + b + c)/6,

μ = (a + b + c)/3,
as well as

σ2 = H1(c2 - c0)[c2
2 + c1

2 + c0
2 + c2c1 + c2c0 + c1c0 - 4μ(c2 + c1 + c0) + 6μ2]/12

and hence
σ2 = C(b - a)[b2 + c2 + a2 + bc + ba + ca - 4μ(b + c + a) + 6μ2]/12,

σ2 = [a2 + b2 + c2 + ab + ac + bc - 4μ(a + b + c) + 6μ2]/6,
Substituting

μ = (a + b + c)/3,
we obtain

σ2 = [a2 + b2 + c2 + ab + ac + bc - 4/3 (a + b + c)2 + 2/3 (a + b + c)2]/6,
σ2 = [3(a2 + b2 + c2 + ab + ac + bc) - 2(a + b + c)2]/18,

σ2 = (3a2 + 3b2 + 3c2 + 3ab + 3ac + 3bc - 2a2 - 2b2 - 2c2 - 4ab - 4ac - 4bc)/18,
σ2 = (a2 + b2 + c2 - ab - ac - bc)/18.

Alternatively,
σ2 = [(c - a)2 + (b - c)2 + (b - a)2]/36.

The  known  formulas  [Cramér,  Kotz  Dorp,  Wikipedia  Triangular  distribution]  for  a  triangular 
probability distribution give the same result.
Nota bene: Similarly, we can also determine further initial and central moments etc. [Cramér], e.g. 
skewness

γ1 = E[(X - μ)3/σ3]
and excess 

γ2 = E[(X - μ)4/σ4] - 3.



Main Results and Conclusions

1.  A piecewise  linear  probability  distribution  is  very  simple,  natural,  and  typical,  as  well  as 
sufficiently general.
2.  A  general  one-dimensional  piecewise  linear  probability  distribution  is  very  suitable  for 
adequately  modeling  via  efficiently  approximating  practically  arbitrary  nonlinear  probability 
distribution with any predetermined precision.
3. The explicit normalization, expectation, and variance formulas along with the median and mode 
formulas and algorithms for a general one-dimensional piecewise linear probability distribution are 
obtained and developed.
4. These formulas and algorithms are also applied to a general one-dimensional piecewise linear 
continuous probability distribution.
5.  The  formulas  and  algorithms  for  a  general  one-dimensional  piecewise  linear  continuous 
probability distribution are very suitable for its important particular case, namely for a tetragonal 
probability distribution. It is also a natural generalization of a triangular probability distribution.
6. The known formulas for a triangular probability distribution as a further particular case of a 
general one-dimensional  piecewise linear  probability distribution provide verifying the obtained 
formulas and algorithms.
7. To additionally verify the present analytical methods, geometrical approach can be also applied if 
possible and useful.
8.  The problems of the existence and uniqueness of the mean, median,  and mode values  for a 
general one-dimensional piecewise linear probability distribution are set and algorithmically solved.
9.  The obtained formulas  and developed algorithms have  clear  mathematical  (probabilistic  and 
statistical)  sense  and are  simple  and very suitable  for  setting  and solving  many typical  urgent 
problems.
10. Piecewise linear probability distribution theory provides scientific basis for discovering and 
thoroughly investigating many complex phenomena and relations not only in probability theory and 
mathematical statistics, but also in physics, engineering, chemistry, biology, geology,  astronomy, 
meteorology, agriculture, politics, management, economics, finance, psychology, etc.
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