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In data processing, the least square method (LSM) [1] by Legendre and Gauss is
practically the unique known one applicable to contradictory problems. But universal
mathematics [2-5] has discovered that the LSM is based on the absolute error not
invariant by equivalent transformations of a problem and loses any sense by possibly
noncoinciding physical dimensions (units). The LSM simply mixes data without their
adequately  weighing,  iterating,  flexibility,  and  justification.  The  LSM paradoxically
gives greater (even absolute) errors by smaller absolute values in approximation.
Universal  mechanics  [3]  has  additionally  discovered  further  defects  and
paradoxicalness of the LSM. Consider its typical simplest approach. Minimizing the
sum of the squared differences of the alone preselected coordinates (e.g., ordinates
in a two-dimensional problem) of the graph of the desired approximation function and
of every given data depends on this preselection, ignores the remaining coordinates,
and provides no coordinate system rotation invariance and hence no objective sense
of the result.  Moreover,  the LSM is correct by constant approximation or no data
scatter only and gives systematic errors increasing together with data scatter and the
deviation (namely declination) of an approximation from a constant.
Place the origin O of the coordinate system Oxy at the center of gravity of any planar
data point  set  F mirror-symmetric  with  respect  to Ox so that for  the moments of
inertia of F, Jx = ∫Fy2dF < Jy = ∫Fx2dF, Jxy = ∫FxydF = 0. Fix initial Oxy as Ox'y'  and
rotate set F with Oxy about O by any angle α (Figures 1, 2). In Ox'y' with x' = x cos α
- y sin α , y' = x sin α + y cos α , c = tan α , fit F via the LSM line y' = kx' = (tan β)x': 

Figure 1. The LSM Rotation Bounds
Figure 2. Initially F ={(0,±1), (±1,±1), … ,

(±5,±1)} in the initial system Oxy

x'
2S(k) = ∫F(kx' - y')2dF = min; dx'

2S(k)/dk = 0; ∫F2x'(kx' - y')dF = 0; k = ∫Fx'y'dF/∫Fx'2dF;
∫Fx'y'dF = sin α cos α ∫F(x2 - y2)dF + (cos2 α - sin2 α) ∫FxydF = c(Jy - Jx)/(1 + c2);



∫Fx'2dF = cos2 α ∫Fx2dF - 2sin α cos α ∫FxydF + sin2 α ∫Fy2dF = (Jxc2 + Jy)/(1 + c2);
k = c(Jy - Jx)/(Jxc2 + Jy), kmax = 0.5(Jy - Jx)/(JxJy)1/2 at cmax = (Jy/Jx)1/2.

Nota bene: By increasing α from 0 over arctan cmax to 90°, the LSM gives β increasing
from 0 to arctan kmax and then suddenly decreasing to 0, respectively. The LSM slope
kmax is about 0.34 and 0.89 whereas  arctan  kmax is about 19.47° and 41.79° only,
respectively. Distance quadrat theories and general theories of moments of inertia
give correct results even by great data scatter, e.g. in aeronautical fatigue.
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