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Classical science [1] based on the real numbers without namely actual infinities and
infinitesimals and on at most countable number operations cannot resolve Zeno's
paradox (5th century BC) on dividing an object of finite measure M > 0 into an infinite
set of equal parts of measure m: if m = 0, then M = 0; if m > 0, then M = +∞ (heap of
infinities without their differentiation). Zero-measure (0M) and zero-dimensional (0D)
points cannot compose 1D lines, 2D surfaces, and 3D spatial bodies. Kepler's and
Cavalieri's composing an area of intervals, a volume of areas, and especially a circle
of central triangles whose limits are radii have no justification because of 0M and 0D
points. Integration has no point-wise summation nature, is artificial, only potentially
infinitesimal,  and hence zero-measure  fully  nonsensitive  without  conservation  law
universality. For example, ∫a

bf(x)dx does not depend on including or excluding zero-
measure endpoints a and/oder b. No common measure Mn is universal. The linear
M1, area M2, and volume M3 measures are only finitely sensitive to bounded parts of
lines, surfaces, and the space. No common measure holds for mixed dimensions.
Unimathematics [2-5] based on uniphilosophy [2, 6] and metauniphilosophy [2, 7] is
perfectly sensitive and exactly measures and integrates namely actual infinities with
conservation  law universality  by  actually  infinitesimal  differences.  Quantisets  with
element quantities q, uninumbers, also uncountable operations, and uniquantities Q
as counting point  unimeasures discover  actually  infinitesimal  point  measure Qn =
Q/Ωn and point-wise space nature  Πj=1

n|xj-0.5/Ω, xj+0.5/Ω|  of half-open/closed point
(j=1

nxj) (in n-dimensional Euclidean  space  Rn) for which  Q(j=1
nxj)  = 1, Qn(j=1

nxj)  = 1/Ωn

using countable cardinality ω = Q{1, 2, ...} and continuum cardinality Ω = Q(0, 1] = Q|
0, 1| = Q(1/20 + (0, 1) + 1/21). At least continually adding points or point functions gives
lines, surfaces, and spaces (possibly their parts, namely open, half-open/closed, and
closed intervals (segments) of length M1 = L (with Q = LΩ -1, Q1 = L - 1/Ω; Q = LΩ, Q1

= L; Q = LΩ +1, Q1 = L+1/Ω, respectively), areas, and volumes) or their functions with
inventing actually infinitesimal point-wise summation integration G, see Figures 1, 2:

Fig.1. Point-wise space layer integration
Figure 2. Actually infinitesimal point-wise

circle sector-triangular integration

Q|a, b| = QΣ|a,b||x-0.5/Ω, x+0.5/Ω| = Σ|a,b|Q|x-0.5/Ω, x+0.5/Ω| = (b-a)Ω 1/Ω Ω = (b-a)Ω;
Q1|a, b| = Q1Σ|a,b||x - 0.5/Ω, x + 0.5/Ω| = Σ|a,b|Q1|x-0.5/Ω, x+0.5/Ω| = (b - a)Ω 1/Ω = b - a.
QΠj=1

n|aj, bj| = Πj=1
n((bj-aj)Ω) = ΩnΠj=1

n(bj-aj); QnΠj=1
n[aj,bj] = Πj=1

ngn[aj,bj] = Πj=1
n(bj-aj+1/Ω).

To provide complete (also uncountable) both analytic and geometric additivity without
intersections and absorption, for any (also corner) point (x, y), regard its angle α (Fig.
1) namely internal for an area, use floor function [z], and take q = 1/4[1/2 + 2α/π] +1/8
tan(α - [1/2 + 2α/π]π/2) for a square or simply q ≈ α/(2π) for the inscribed circle (for
the 3D space, q ≈ α/(4π)). For internal point (x,  y),  α = 2π, q = 1. For boundary
differentiable point, e.g., (x, f(x)), α = π, q = 1/2. Independently of above additivity,
G|-ω, ω|×|0, f(x)| = ∫-∞

+∞f(x)dx; Qq(x,y)[a, b]×[0, f(x)] = Σ[a,b]×[0,f(x)]q(x,y) = Σ[a,b]Σ[0,f(x)]q(x, y); 
Gq(x,y)[a, b]×[0, f(x)] = Qq(x,y)[a, b]×[0, f(x)]/Ω2 = Σ[a,b]×[0,f(x)]q(x,y)/Ω2 = Σ[a,b]Σ[0,f(x)]q(x, y)/Ω2;

G[qa,rb]×[s0,tf(x)] = ∫a
bf(x)dx + [(q-1/2)f(a)+(r-1/2)f(b)+(s+t-1)(b-a)]/Ω+(q+r-1)(s+t-1)/Ω2; 

G|a, b|×|0, f(x)| = G[1/2a, 1/2b]×[1/20, 1/2f(x)] = ∫a
bf(x)dx;



G[a, b]×[0, f(x)]=∫a
bf(x)dx + [f(a)/2 + f(b)/2 + b - a]/Ω + 1/Ω2 (for above additivity, take

α = π/2 + arctan df(x)/dx at (a, f(a)), α = π/2 - arctan df(x)/dx at (b, f(b)), see Fig. 1);
 G(a, b)×(0, f(x)) = G[0a, 0b]×[00, 0f(x)] = ∫a

bf(x)dx - [f(a)/2 + f(b)/2 + b - a)]/Ω + 1/Ω2.
Q{(x, y)|x2+y2≤1/2r2}=1/2 rΩ 1 2πrΩ=πr2Ω2; G{(x,y)|x2+y2≤1/2r2}=πr2Ω2/Ω2 = πr2 (Fig. 2);
Q{(x, y)|x2+y2≤r2} = π(rΩ+1/2)2 =πr2Ω2+πrΩ+π/4; G{(x,y)|x2+y2≤r2}=πr2+πr/Ω+π/(4Ω2);
Q{(x, y)|x2+y2<r2} = π(rΩ-1/2)2 = πr2Ω2-πrΩ+π/4; G{(x,y)|x2+y2<r2}= πr2-πr/Ω+π/(4Ω2).

Universal  space discretization,  measurement,  and integration via multidimensional
infinitesimal points provides  intelligently  solving urgent complicated problems, e.g.,
modeling real materials, cracks, and their propagation in aeronautical fatigue.
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